3^2x-9=1/27

Simple and best practice solution for 3^2x-9=1/27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^2x-9=1/27 equation:



3^2x-9=1/27
We move all terms to the left:
3^2x-9-(1/27)=0
We add all the numbers together, and all the variables
3^2x-9-(+1/27)=0
We get rid of parentheses
3^2x-9-1/27=0
We multiply all the terms by the denominator
3^2x*27-1-9*27=0
We add all the numbers together, and all the variables
3^2x*27-244=0
Wy multiply elements
81x^2-244=0
a = 81; b = 0; c = -244;
Δ = b2-4ac
Δ = 02-4·81·(-244)
Δ = 79056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{79056}=\sqrt{1296*61}=\sqrt{1296}*\sqrt{61}=36\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{61}}{2*81}=\frac{0-36\sqrt{61}}{162} =-\frac{36\sqrt{61}}{162} =-\frac{2\sqrt{61}}{9} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{61}}{2*81}=\frac{0+36\sqrt{61}}{162} =\frac{36\sqrt{61}}{162} =\frac{2\sqrt{61}}{9} $

See similar equations:

| 200=120x-40 | | 2(y-13)=y+16 | | 13-2b=37 | | 2(w+22)=w+55 | | (u-3)(u-7)=0 | | 2(u-35)=u | | 16x=32=180 | | -4x+9-x=-3 | | -4v=-60 | | x/10=24;x | | F=(15x+10)° | | 40x-20=24x+12=180 | | 10−9j=–10j | | 6^(3x-3)=216^(3x+1) | | (4x–3)(x+1)=0 | | 7(p-8=91 | | x+16.7=20 | | 33=3(x+3)+3 | | w+18=27;w= | | -7.45+10k-2.9k=-9.48+4.2k | | (4x-11)(x-3)=0 | | 4x-135=415 | | 3/3.5x=4x+8 | | z/5+6=−84 | | x^+6x-112=0 | | z5+6=−84 | | 3v^2+17v+24=3v2+17v+24=5 | | 4=2c+2(-2c-5) | | x/18-9=-7 | | t–31=127 | | 2s+10–7s–8+3s–7=0 | | 8r=32;r= |

Equations solver categories